
Bound-preserving high order schemes for
hyperbolic equations: survey and recent

developments

Chi-Wang Shu

Division of Applied Mathematics

Brown University



BOUND-PRESERVING HIGH ORDER SCHEMES FOR HYPERBOLIC EQUATIONS

Outline

• Introduction

• Bound-preserving first order schemes

• Bound-preserving high order schemes

• Another approach: flux correction

• Numerical results

• Conclusions and future work

Division of Applied Mathematics, Brown University



BOUND-PRESERVING HIGH ORDER SCHEMES FOR HYPERBOLIC EQUATIONS

Introduction

We are interested in numerically solving hyperbolic conservation laws

ut + ▽ · F(u) = 0, u(x, 0) = u0(x) (1)

or other related hyperbolic or convection dominated equations. In

particular, we are interested in the bound-preserving properties of high

order numerical schemes.

We assume the exact solution of the PDE (1) has a convex invariant

region G:

• If u(·, 0) ∈ G, then u(·, t) ∈ G for all t > 0.
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For a convex region G, if u1, · · · , um ∈ G, αi ≥ 0,
∑m

i=1
αi = 1, then

u =
∑m

i=1
αiui ∈ G. We will heavily use this property when building our

high order bound-preserving schemes.

Several examples:

• If (1) is a scalar conservation law, an important property of the entropy

solution (which may be discontinuous) is that it satisfies a strict

maximum principle: If

M = max
x

u0(x), m = min
x

u0(x), (2)

then u(x, t) ∈ [m,M ] for any x and t.

Therefore, G = [m,M ] is an invariant region. It is clearly convex.
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• For the compressible Euler equations:

ut + f(u)x = 0

with

u =









ρ

ρv

E









, f(u) =









ρv

ρv2 + p

v(E + p)









,

where E = e + 1

2
ρv2. The internal energy e is related to density and

pressure through the equation of states (EOS). For the ideal gas, we

have e = p
γ−1

with γ = 1.4 for air.
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In this case, we can verify that the set

G = {u : ρ ≥ 0, e ≥ 0} (3)

is invariant. It is also easy to check that G is convex (for this we need

to check that the internal energy e is a concave function of the

conservative variable u, then Jensen’s inequality implies the convexity

of G).

For many EOS, e.g. that for the ideal gas, the region G defined in (3)

is equivalent to

G = {u : ρ ≥ 0, p ≥ 0}.
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• Consider the relativistic hydrodynamics

ut + f(u)x = 0

with

u =









D

m

E









, f(u) =









Dv

mv + p

m









where p, D, m and E are the thermal pressure, mass density,

momentum and energy, respectively. v is the velocity. Moreover, units

are normalized such that the speed of light is c = 1.
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If we denote ρ to be the proper rest-mass density, then the

conservative variable u can be written as

D = γρ,

m = Dhγv,

E = Dhγ − p,

where γ = (1 − v2)−1/2 is the Lorentz factor and h is the specific

enthalpy. To close the system, we specify an equation of state

h = h(p, ρ). For ideal gas

ρh = ρ + pΓ/(Γ − 1)

with Γ being the specific heat ratio, such that 1 < Γ ≤ 2
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It can be shown that the density D and pressure p are positive, and

the velocity satisfies v2 ≤ 1, if they are initially in these cases.

Therefore,

G = {u : D > 0, E > 0, p > 0, v2 ≤ 1}

is an invariant region. It is convex and can be represented as

G = {w : D > 0, E >
√

D2 + m2}.

Wu and Tang, JCP 2015 and Qin, Shu and Yang, JCP 2016.
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Bound-preserving first order schemes

It is of course desirable to have the invariant region G also to be an

invariant region for the numerical solution. That is, we wish that, if the

initial condition u(·, 0) ∈ G then u(·, t) ∈ G for later time t > 0. This

time u stands for the numerical solution.

We first consider fulfilling this task for first order schemes.
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• First order monotone schemes can easily maintain the maximum

principle. For the one-dimensional conservation law

ut + f(u)x = 0,

the first order monotone scheme

un+1
j = Hλ(u

n
j−1, u

n
j , un

j+1)

= un
j − λ[h(un

j , un
j+1) − h(un

j−1, u
n
j )]

where λ = ∆t
∆x

and h(u−, u+) is a monotone flux (h(↑, ↓)), satisfies

Hλ(↑, ↑, ↑)

under a suitable CFL condition

λ ≤ λ0.
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Also, for any constant c,

Hλ(c, c, c) = c − λ[h(c, c) − h(c, c)] = c.

Therefore, if

m ≤ un
j−1, u

n
j , un

j+1 ≤ M

then

un+1
j = Hλ(u

n
j−1, u

n
j , un

j+1) ≥ Hλ(m,m,m) = m,

and

un+1
j = Hλ(u

n
j−1, u

n
j , un

j+1) ≤ Hλ(M,M,M) = M.
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• For compressible Euler equations, there are several first order

schemes, including the Godunov scheme, Lax-Friedrichs scheme,

kinetic scheme, HLLC scheme, etc., which satisfy the

bound-preserving property for positive density and internal energy (or

positive density and pressure for certain EOS), under suitable CFL

condition

λ ≤ λ0.

• For relativistic hydrodynamics, the first order Lax-Friedrichs scheme is

bound-preserving for the invariant region G mentioned above, under

suitable CFL condition

λ ≤ λ0.

Wu and Tang, JCP 2015 and Qin, Shu and Yang, JCP 2016.
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• For multi-dimensional ideal magnetohydrodynamics (MHD) equations

(the symmetrizable version by Godunov), the first order Lax-Friedrichs

type scheme is bound-preserving for the invariant region G with

positive density and pressure, under suitable CFL condition

λ ≤ λ0.

Wu and Shu, SISC to appear.

We emphasize that it is already non-trivial to find first order schemes

which are bound-preserving, e.g. for MHD equations. Since our high order

bound-preserving schemes discussed later are built upon first order

bound-preserving schemes, the very first task when one would like to

solve a new PDE is to find a first order bound-preserving scheme.
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Bound-preserving high order schemes

For higher order linear schemes, i.e. schemes which are linear for a linear

PDE

ut + aux = 0 (4)

for example the second order accurate Lax-Wendroff scheme

un+1
j =

aλ

2
(1 + aλ)un

j−1 + (1 − a2λ2)un
j − aλ

2
(1 − aλ)un

j+1

where λ = ∆t
∆x

and |a|λ ≤ 1, the maximum principle is not satisfied. In

fact, no linear schemes with order of accuracy higher than one can satisfy

the maximum principle (Godunov Theorem).
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Therefore, nonlinear schemes, namely schemes which are nonlinear even

for linear PDEs, have been designed to overcome this difficulty. These

include roughly two classes of schemes:

• TVD schemes. Most TVD (total variation diminishing) schemes also

satisfy strict maximum principle, even in multi-dimensions. TVD

schemes can be designed for any formal order of accuracy for

solutions in smooth, monotone regions. However, all TVD schemes

will degenerate to first order accuracy at smooth extrema.

• TVB schemes, ENO schemes, WENO schemes. These schemes do

not insist on strict TVD properties, therefore they do not satisfy strict

maximum principles, although they can be designed to be arbitrarily

high order accurate for smooth solutions.
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A high order finite volume scheme has the following algorithm flowchart:

(1) Given {ūn
j }

(2) reconstruct un(x) (piecewise polynomial with cell average ūn
j )

(3) evolve by, e.g. Runge-Kutta time discretization to get {ūn+1
j }

(4) return to (1)
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A high order discontinuous Galerkin scheme has a similar algorithm

flowchart:

(1) Given un(x) (piecewise polynomial with the cell average ūn
j )

(2) evolve by, e.g. Runge-Kutta time discretization to get un+1(x)

(with the cell average{ūn+1
j }

(3) return to (1)
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We will call a finite volume or DG scheme bound-preserving, if we have

m ≤ un+1(x) ≤ M, ∀x

provided

m ≤ un(x) ≤ M, ∀x.

A suitable modification to evaluate the bounds only at certain quadrature

points will be given later to facilitate easy implementation.
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The flowchart for designing a high order finite volume or DG scheme

which obeys a strict maximum principle is as follows:

1. Start with un(x) which is high order accurate

|u(x, tn) − un(x)| ≤ C∆xp

and satisfies

m ≤ un(x) ≤ M, ∀x

therefore of course we also have

m ≤ ūn
j ≤ M, ∀j.
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2. Evolve for one time step to get

m ≤ ūn+1
j ≤ M, ∀j. (5)

3. Given (5) above, obtain un+1(x) (reconstruction or evolution) which

• satisfies the maximum principle

m ≤ un+1(x) ≤ M, ∀x;

• is high order accurate

|u(x, tn+1) − un+1(x)| ≤ C∆xp.
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Three major difficulties

1. The first difficulty is how to evolve in time for one time step to

guarantee

m ≤ ūn+1
j ≤ M, ∀j. (6)

This is very difficult to achieve. Previous works use one of the

following two approaches:
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• Use exact time evolution. This can guarantee

m ≤ ūn+1
j ≤ M, ∀j.

However, it can only be implemented with reasonable cost for linear

PDEs, or for nonlinear PDEs in one dimension. This approach was

used in, e.g., Jiang and Tadmor, SISC 1998; Liu and Osher,

SINUM 1996; Sanders, Math Comp 1988; Qiu and Shu, SINUM

2008; Zhang and Shu, SINUM 2010; to obtain TVD schemes or

maximum-principle-preserving schemes for linear and nonlinear

PDEs in one dimension or for linear PDEs in multi-dimensions, for

second or third order accurate schemes.
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• Use simple time evolution such as SSP Runge-Kutta or multi-step

methods. However, additional limiting will be needed on un(x)

which will destroy accuracy near smooth extrema.

In Zhang and Shu, JCP 2010a, a procedure is designed to obtain

m ≤ ūn+1
j ≤ M, ∀j

with simple Euler forward or SSP Runge-Kutta or multi-step methods

without losing accuracy on the limited un(x):
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The evolution of the cell average for a higher order finite volume or DG

scheme satisfies

ūn+1
j = G(ūn

j , u
−

j− 1

2

, u+

j− 1

2

, u−

j+ 1

2

,u+

j+ 1

2

)

= ūn
j − λ[h(u−

j+ 1

2

, u+

j+ 1

2

) − h(u−

j− 1

2

, u+

j− 1

2

)],

where

G(↑, ↑, ↓, ↓, ↑)
therefore there is no maximum principle. The problem is with the two

arguments u+

j− 1

2

and u−

j+ 1

2

which are values at points inside the cell

Ij .
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The polynomial pj(x) (either reconstructed in a finite volume method

or evolved in a DG method) is of degree k, defined on Ij such that ūn
j

is its cell average on Ij , u+

j− 1

2

= pj(xj− 1

2

) and u−

j+ 1

2

= pj(xj+ 1

2

).

We take a Legendre Gauss-Lobatto quadrature rule which is exact for

polynomials of degree k, then

ūn
j =

m
∑

ℓ=0

ωℓpj(yℓ)

with y0 = xj− 1

2

, ym = xj+ 1

2

. The scheme for the cell average is then

rewritten as
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ūn+1
j = ωm

[

u−

j+ 1

2

− λ

ωm

(

h(u−

j+ 1

2

, u+

j+ 1

2

) − h(u+

j− 1

2

, u−

j+ 1

2

)
)

]

+ω0

[

u+

j− 1

2

− λ

ω0

(

h(u+

j− 1

2

, u−

j+ 1

2

) − h(u−

j− 1

2

, u+

j− 1

2

)
)

]

+

m−1
∑

ℓ=1

ωℓpj(yℓ)

= ωmHλ/ωm
(u+

j− 1

2

, u−

j+ 1

2

, u+

j+ 1

2

) + ω0Hλ/ω0
(u−

j− 1

2

, u+

j− 1

2

, u−

j+ 1

2

)

+
m−1
∑

ℓ=1

ωℓpj(yℓ).
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Therefore, if

m ≤ pj(yℓ) ≤ M

at all Legendre Gauss-Lobatto quadrature points and a reduced CFL

condition

λ/ωm = λ/ω0 ≤ λ0

is satisfied, then

m ≤ ūn+1
j ≤ M.
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2. The second difficulty is: given

m ≤ ūn+1
j ≤ M, ∀j

how to obtain an accurate un+1(x) (reconstruction or limited DG

evolution) which satisfies

m ≤ un+1(x) ≤ M, ∀x.

Previous work was mainly for relatively lower order schemes (second

or third order accurate), and would typically require an evaluation of

the extrema of un+1(x), which, for a piecewise polynomial of higher

degree, is quite costly.
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Again in Zhang and Shu, JCP 2010a, a procedure is designed to

obtain such un+1(x) with a very simple scaling limiter, which only

requires the evaluation of un+1(x) at certain pre-determined

quadrature points and does not destroy accuracy:
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We replace pj(x) by the limited polynomial p̃j(x) defined by

p̃j(x) = θj(pj(x) − ūn
j ) + ūn

j

where

θj = min

{∣

∣

∣

∣

M − ūn
j

Mj − ūn
j

∣

∣

∣

∣

,

∣

∣

∣

∣

m − ūn
j

mj − ūn
j

∣

∣

∣

∣

, 1

}

,

with

Mj = max
x∈Sj

pj(x), mj = min
x∈Sj

pj(x)

where Sj is the set of Legendre Gauss-Lobatto quadrature points of

cell Ij .

Clearly, this limiter is just a simple scaling of the original polynomial

around its average.
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The following lemma, guaranteeing the maintenance of accuracy of

this simple limiter, is proved in Zhang and Shu, JCP 2010a:

Lemma: Assume ūn
j ∈ [m,M ] and pj(x) is an O(∆xp)

approximation, then p̃j(x) is also an O(∆xp) approximation.

We have thus obtained a high order accurate scheme satisfying the

following maximum principle: If

m ≤ un(x) ≤ M, ∀x ∈ Sj,

then

m ≤ un+1(x) ≤ M, ∀x ∈ Sj.

Recall that Sj is the set of Legendre Gauss-Lobatto quadrature points

of cell Ij .
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3. The third difficulty is how to generalize the algorithm and result to 2D

(or higher dimensions). Algorithms which would require an evaluation

of the extrema of the reconstructed polynomials un+1(x, y) would not

be easy to generalize at all.

Our algorithm uses only explicit Euler forward or SSP (also called

TVD) Runge-Kutta or multi-step time discretizations, and a simple

scaling limiter involving just evaluation of the polynomial at certain

quadrature points, hence easily generalizes to 2D or higher

dimensions on structured or unstructured meshes, with strict

maximum-principle-satisfying property and provable high order

accuracy.
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The technique has been generalized to the following situations maintaining

uniformly high order accuracy:

• 2D scalar conservation laws on rectangular or triangular meshes with

strict maximum principle (Zhang and Shu, JCP 2010a; Zhang, Xia and

Shu, JSC 2012).

• 2D incompressible equations in the vorticity-streamfunction

formulation (with strict maximum principle for the vorticity), and 2D

passive convections in a divergence-free velocity field, i.e.

ωt + (uω)x + (vω)x = 0,

with a given divergence-free velocity field (u, v), again with strict

maximum principle (Zhang and Shu, JCP 2010a; Zhang, Xia and Shu,

JSC 2012).
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• One and multi-dimensional compressible Euler equations maintaining

positivity of density and pressure (Zhang and Shu, JCP 2010b; Zhang,

Xia and Shu, JSC 2012).

• One and two-dimensional shallow water equations maintaining

non-negativity of water height and well-balancedness for problems

with dry areas (Xing, Zhang and Shu, Advances in Water Resources

2010; Xing and Shu, Advances in Water Resources 2011).

• One and multi-dimensional compressible Euler equations with source

terms (geometric, gravity, chemical reaction, radiative cooling)

maintaining positivity of density and pressure (Zhang and Shu, JCP

2011).
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• One and multi-dimensional compressible Euler equations with

gaseous detonations maintaining positivity of density, pressure and

reactant mass fraction, with a new and simplified implementation of

the pressure limiter. DG computations are stable without using the

TVB limiter (Wang, Zhang, Shu and Ning, JCP 2012).

• A minimum entropy principle satisfying high order scheme for gas

dynamics equations (Zhang and Shu, Num Math 2012).

• Cosmological hydrodynamical simulation of turbulence in the

intergalactic medium (IGM) involving kinetic energy dominated flows

(Zhu, Feng, Xia, Shu, Gu and Fang, Astrophysical J. 2013).

• Ideal special relativistic hydrodynamics (RHD) (Qin, Shu and Yang,

JCP 2016).
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• Positivity-preserving high order finite difference WENO schemes for

compressible Euler equations (Zhang and Shu, JCP 2012).

• Simplified version for WENO finite volume schemes without the need

to evaluate solutions at quadrature points inside the cell (Zhang and

Shu, Proceedings of the Royal Society A, 2011).

• Positivity-preserving for PDEs involving global integral terms including

a hierarchical size-structured population model (Zhang, Zhang and

Shu, JCAM 2011), Vlasov-Boltzmann transport equations (Cheng,

Gamba and Proft, Math Comp 2012), and correlated random walk with

density-dependent turning rates (Lu, Shu and Zhang, Sci. China Math

2013).
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• Positivity-preserving semi-Lagrangian schemes (Qiu and Shu, JCP

2011; Rossmanith and Seal, JCP 2011).

• Positivity-preserving first order and higher order Lagrangian schemes

for multi-material flows (Cheng and Shu, JCP 2014; Vilar, Shu and

Maire, JCP 2016a, JCP2016b).

• Implicit time discretization (needs a lower bound for CFL, Qin and

Shu, SISC 2018)
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• Positivity-preserving DG methods for radiative transfer equations, with

iterative procedure for steady states or implicit time discretization for

time-dependent equations (Yuan, Cheng and Shu, SISC 2016; Ling,

Cheng and Shu, JSC to appear).

• Positivity-preserving DG methods for ideal magnetohydrodynamics

(MHD) equations (Cheng, Li, Qiu and Xu, JCP 2013; Wu, SINUM

2018; Wu and Shu, SISC to appear).
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Another approach: flux correction

Another approach to achieve bound-preserving schemes is through the

traditional flux-correction method, namely modify the numerical flux by

f̂ = θf̂h + (1 − θ)f̂ l

where f̂h is the high order numerical flux and f̂ l is the first order

numerical flux (which does lead to a bound-preserving first order scheme).

Many traditional TVD or bound-preserving schemes follow this approach.

It is relatively easy to design θ to guarantee bound-preserving, but it is

relatively more difficult to guarantee accuracy (and often accuracy is lost,

especially near smooth extrema).
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Recently, this approach has been revived. The limiter in Hu, Adam and

Shu, JCP 2013 belongs to this class. We mention in particular the work of

Zhengfu Xu (the high order parametrized maximum-principle-preserving

and positivity-preserving finite difference schemes, Xu, Math Comp 2014).

This is one of the rare cases that such flux-correction method has been

proved to maintain the original high order accuracy even near smooth

extrema. However, the proof is via explicit and complicated algebraic

verifications, thus limiting the scope that it can be applied. See Liang and

Xu, JSC 2014 (scalar conservation law); Xiong, Qiu and Xu, JCP 2013

(incompressible flow); Christlieb, Liu, Tang and Xu, JCP 2015

(unstructured mesh) and SISC 2015 (MHD); Jiang, Shu and Zhang,

M 3AS 2015 (correlated random walk); Wu and Tang, JCP 2015 (special

relativistic hydrodynamics).
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Numerical results

Example 1. Accuracy check. For the incompressible Euler equation in the

vorticity-streamfunction formulation, with periodic boundary condition and

initial data ω(x, y, 0) = −2 sin (x) sin (y) on the domain

[0, 2π] × [0, 2π], the exact solution is ω(x, y, t) = −2 sin (x) sin (y).

We clearly observe the designed order of accuracy for this solution.
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Table 1: Incompressible Euler equations. P 2 for vorticity, t = 0.5.

N×N L1 error order L∞ error order

16×16 5.12E-4 – 1.40E-3 –

32×32 3.75E-5 3.77 1.99E-4 2.81

64×64 3.16E-6 3.57 2.74E-5 2.86

128×128 2.76E-7 3.51 3.56E-6 2.94
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Example 2. The vortex patch problem. We solve the incompressible Euler

equations in [0, 2π] × [0, 2π] with the initial condition

ω(x, y, 0) =















−1, π
2
≤ x ≤ 3π

2
, π

4
≤ y ≤ 3π

4
;

1, π
2
≤ x ≤ 3π

2
, 5π

4
≤ y ≤ 7π

4
;

0, otherwise

and periodic boundary conditions. The contour plots of the vorticity ω are

given for t = 10. Again, we cannot observe any significant difference

between the two results in the contour plots. The cut along the diagonal

gives us a clearer view of the advantage in using the limiter.
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Figure 1: Vorticity at t = 10, P 2. 30 equally spaced contours from −1.1

to 1.1. 1282 mesh. Left: with limiter; Right: without limiter.
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Figure 2: Vorticity at t = 10, P 2. Cut along the diagonal. 1282 mesh. Left:

with limiter; Right: without limiter.

Division of Applied Mathematics, Brown University



BOUND-PRESERVING HIGH ORDER SCHEMES FOR HYPERBOLIC EQUATIONS

Example 3. The Sedov point-blast wave in one dimension. For the initial

condition, the density is 1, velocity is zero, total energy is 10−12

everywhere except that the energy in the center cell is the constant E0

∆x

with E0 = 3200000 (emulating a δ-function at the center). γ = 1.4. The

computational results are shown in Figure 3. We can see the shock is

captured very well.
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Figure 3: 1D Sedov blast. The solid line is the exact solution. Symbols

are numerical solutions. T = 0.001. N = 800. ∆x = 4

N
. TVB limiter

parameters (M1,M2,M3) = (15000, 20000, 15000). Pressure (left)

and velocity (right).
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Figure 4: 1D Sedov blast. The solid line is the exact solution. Symbols

are numerical solutions. T = 0.001. N = 800. ∆x = 4

N
. TVB limiter

parameters (M1,M2,M3) = (15000, 20000, 15000). Density.
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Example 4. The Sedov point-blast wave in two dimensions. The

computational domain is a square. For the initial condition, the density is

1, velocity is zero, total energy is 10−12 everywhere except that the

energy in the lower left corner cell is the constant 0.244816
∆x∆y

. γ = 1.4. See

Figure 5. The computational result is comparable to those in the literature,

e.g. those computed by Lagrangian methods.
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Figure 5: 2D Sedov blast, plot of density. T = 1. N = 160.

∆x = ∆y = 1.1
N

. TVB limiter parameters (M1,M2,M3,M4) =

(8000, 16000, 16000, 8000).
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Figure 6: 2D Sedov blast, plot of density. T = 1. N = 160.

∆x = ∆y = 1.1
N

. TVB limiter parameters (M1,M2,M3,M4) =

(8000, 16000, 16000, 8000).
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Example 5. We consider two Riemann problems. The first one is a double

rarefaction. We did two tests, one is a one-dimensional double rarefaction,

for which the initial condition is ρL = ρR = 7, uL = −1, uR = 1,

pL = pR = 0.2 and γ = 1.4. The other one is a two-dimensional double

rarefaction with the initial condition ρL = ρR = 7, uL = −1, uR = 1,

vL = vR = 0, pL = pR = 0.2. The exact solution contains vacuum.
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Figure 7: Double rarefaction problem. T=0.6. Left: 1D problem. Right: Cut

at y = 0 for the 2D problem. Every fourth cell is plotted. The solid line is

the exact solution. Symbols are numerical solutions. ∆x = 2

N
, N = 800

with the positivity limiter. Density.
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Figure 8: Double rarefaction problem. T=0.6. Left: 1D problem. Right: Cut

at y = 0 for the 2D problem. Every fourth cell is plotted. The solid line is

the exact solution. Symbols are numerical solutions. ∆x = 2

N
, N = 800

with the positivity limiter. Pressure.
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Figure 9: Double rarefaction problem. T=0.6. Left: 1D problem. Right: Cut

at y = 0 for the 2D problem. Every fourth cell is plotted. The solid line is

the exact solution. Symbols are numerical solutions. ∆x = 2

N
, N = 800

with the positivity limiter. Velocity.
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The second one is a 1D Leblanc shock tube problem. The initial condition

is ρL = 2, ρR = 0.001, uL = uR = 0, pL = 109, pR = 1, and

γ = 1.4. See the next figure for the results of 800 cells and 6400 cells.
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Figure 10: Leblanc problem. T = 0.0001. Left: N = 800. Right:

N = 6400. The solid line is the exact solution. Symbols are numerical

solutions. ∆x = 20

N
with the positivity limiter. log-scale of density.
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Figure 11: Leblanc problem. T = 0.0001. Left: N = 800. Right:

N = 6400. The solid line is the exact solution. Symbols are numerical

solutions. ∆x = 20

N
with the positivity limiter. log-scale of pressure.
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Figure 12: Leblanc problem. T = 0.0001. Left: N = 800. Right:

N = 6400. The solid line is the exact solution. Symbols are numerical

solutions. ∆x = 20

N
with the positivity limiter. Velocity.
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Example 6. To simulate the gas flows and shock wave patterns which are

revealed by the Hubble Space Telescope images, one can implement

theoretical models in a gas dynamics simulator. The two-dimensional

model without radiative cooling is governed by the compressible Euler

equations. The velocity of the gas flow is extremely high, and the Mach

number could be hundreds or thousands. A big challenge for computation

is, even for a state-of-the-art high order scheme, negative pressure could

appear since the internal energy is very small compared to the huge

kinetic energy (Ha, Gardner, Gelb and Shu, JSC 2005).

First, we compute a Mach 80 (i.e. the Mach number of the jet inflow is 80

with respect to the soundspeed in the jet gas) problem without the

radiative cooling.
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Figure 13: Simulation of Mach 80 jet without radiative cooling. Scales are

logarithmic. Density.
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Second, to demonstrate the robustness of our method, we compute a

Mach 2000 problem. The domain is [0, 1] × [0, 0.5]. The width of the jet

is 0.1. The terminal time is 0.001. The speed of the jet is 800, which is

around Mach 2100 with respect to the soundspeed in the jet gas. The

computation is performed on a 640 × 320 mesh. TVB limiter parameters

are M1 = M2 = M3 = M4 = 10000000.
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Figure 14: Simulation of Mach 2000 jet without radiative cooling. Scales

are logarithmic. Density.
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Lastly, we compute a Mach 80 (i.e. the Mach number of the jet inflow is 80

with respect to the soundspeed in the jet gas) problem with the radiative

cooling to test the positivity-preserving property with the radiative cooling

source term.
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Figure 15: Simulation of Mach 80 jet with radiative cooling. The third or-

der positivity-preserving RKDG scheme with the TVB limiter. Scales are

logarithmic. Density.
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Example 7. Shock diffraction problem. Shock passing a backward facing

corner of 135◦. It is easy to get negative density and/or pressure below

the corner. This problem also involves mixed triangular / rectangular

meshes for the DG method. The initial conditions are, if x < 1.5 and

y ≥ 2, (ρ, u, v, E, Y ) = (11, 6.18, 0, 970, 1); otherwise,

(ρ, u, v, E, Y ) = (1, 0, 0, 55, 1). The boundary conditions are

reflective. The terminal time is t = 0.68.
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Figure 16: Density. Detonation diffraction at a 135◦ corner.
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Conclusions and future work

Topics not discussed: Bound-preserving convection-diffusion equations

including Navier-Stokes equations

• Second or at most third order DG methods for general

convection-diffusion equations (Zhang, Zhang and Shu, JCP 2013;

Chen, Huang and Yan, JCP 2016)

• High order non-standard finite volume schemes (Zhang, Liu and Shu,

SISC 2012)

• High order DG or finite volume methods for Navier-Stokes equations

(Zhang, JCP 2017)
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Summary and future work:

• There is a general framework to obtain uniformly high order

bound-preserving schemes for multi-dimensional nonlinear

conservation laws and other hyperbolic equations including the

radiative transfer equations.

• In the future we will design higher order bound-preserving DG

schemes for other types of PDEs and other types of time

discretizations.
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THANK YOU!
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